CHT313: Molecular Modelling

School Cardiff School of Chemistry
Department Code CHEMY
Module Code CHT313
External Subject Code F170
Number of Credits 10
Level L7
Language of Delivery English
Module Leader Professor Peter Knowles
Semester Autumn Semester
Academic Year 2020/1

Outline Description of Module

This module exposes students to the range of computational methods that can be applied to diverse chemical problems, from the structure and property of molecules to chemical thermodynamics, kinetics and reactivity. Methods for describing molecules, ranging from quantum chemical and molecular orbital methods for relatively small molecules to atomistic simulation of larger, more complex systems will be discussed. Throughout, the ability to extract chemically relevant properties from molecular modelling experiments will be a major focus.

On completion of the module a student should be able to


  • Appreciate the range of modelling methods available to tackle chemical problems.
  • Know the fundamentals of theories underpinning such methods.
  • Identify the key results obtained from calculations, and interpret these with regard to the physics/chemistry of the problem.


  • Realise the strengths and limitations of various modelling methods for tackling chemical problems.
  • Understand the scope of particular methods, appreciate the errors involved and how to estimate and control such errors
  • Appreciate the trade-off between accuracy and computational resources.

How the module will be delivered

A blend of on-line learning activities with face to face small group learning support and feedback.

This module consists of four distinct blocks, each covering a different aspect of molecular modelling, delivered through five hours of lectures, and supplemented by class tutorials

Skills that will be practised and developed

Ability to analyse and critically assess various approaches to computational simulation of chemical systems.

How the module will be assessed

The module will be assessed by a combination of coursework (20%) and written examination (80%).

Assessment Breakdown

Type % Title Duration(hrs)
Written Assessment 20 Problem-Based Assignments N/A
Online Examination - Autumn Semester 80 Molecular Modelling 2

Syllabus content

A selection of applications across the spectrum of molecular modelling techniques, including the structure and properties of molecules and their potential energy surfaces, chemical energetics and thermodynamics, chemical reactivity and kinetics.

Molecular Electronic Structure

Correlated wavefunction and density-functional methods; electromagnetic properties; excited states; intermolecular interactions

Model Force Fields

Parameterised forms for bonded interactions; functional forms and methods for parameterisation; specifics for non-bonded interactions: charges, multipoles, Leonard-Jones & Buckingham potentials; application to organic and inorganic systems

Electronic Structure for Catalysis Applications

Hartree-Fock and Density-Functional theories for periodic solids; molecular and dissociative adsorption

Molecular Dynamics

Fundamentals of Molecular Dynamics; Born-Oppenheimer, Ehrenfest and Car-Parrinello dynamics; time propagation algorithms; periodic boundary conditions; radial distribution functions; thermodynamics of ensembles; examples of applications

Essential Reading and Resource List

Molecular Modelling, Principles and Applications, Andrew Leach.

Introduction to Computational Chemistry, Frank Jensen.

Essentials of Computational Chemistry, Christopher J. Cramer.

Computer Simulation of Liquids, M P Allen and D J Tildesley.

Statistical Mechanics: Theory and Molecular Simulation, Mark Tuckerman

Background Reading and Resource List

Please see Essential Reading List.

Copyright Cardiff University. Registered charity no. 1136855